Arithmetic properties of polynomial solutions of the Diophantine equation $$P(x)x^{n+1}+Q(x)(x+1)^{n+1}=1$$
نویسندگان
چکیده
Abstract For each integer $$n\ge 1$$ n ≥ 1 we consider the unique polynomials $$P, Q\in {\mathbb {Q}}[x]$$ P , Q ∈ [ x ] of smallest degree n that are solutions equation $$P(x)x^{n+1}+Q(x)(x+1)^{n+1}=1$$ ( ) + = . We derive numerous properties these and their derivatives, including explicit expansions, differential equations, recurrence relations, generating functions, resultants, discriminants, irreducibility results. also some related properties.
منابع مشابه
control of the optical properties of nanoparticles by laser fields
در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...
15 صفحه اولextensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولPolynomial parametrization for the solutions of Diophantine equations and arithmetic groups
This paper was motivated by the following open problem ([8], p.390): “CNTA 5.15 (Frits Beukers). Prove or disprove the following statement: There exist four polynomials A,B,C,D with integer coefficients (in any number of variables) such that AD−BC = 1 and all integer solutions of ad−bc = 1 can be obtained from A,B,C,D by specialization of the variables to integer values.” Actually, the problem ...
متن کاملOn the Solutions to the Diophantine Equation
In this paper we are concerned with a question that has already been answered, involving Fibonacci-type sequences and their characteristic numbers. We are only interested in primitive sequences iconsecutive pairs of terms have no common factors) and for these sequences we ask: What numbers can be the characteristic of a sequence, and given such a number, how many sequences have it? Thoro [1] ha...
متن کاملThe Smallest Solutions to the Diophantine Equation
In this paper we discuss a method used to find the smallest nontrivial positive integer solutions to a1 + a 6 2 = b 6 1 + b 6 2 + b 6 3 + b 6 4 + b 6 5. The method, which is an improvement over a simple brute force approach, can be applied to search the solution to similar equations involving sixth, eighth and tenth powers.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Periodica Mathematica Hungarica
سال: 2021
ISSN: ['0031-5303', '1588-2829']
DOI: https://doi.org/10.1007/s10998-020-00376-5